Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Virol ; 93(11): 6116-6123, 2021 11.
Article in English | MEDLINE | ID: covidwho-1349155

ABSTRACT

Virus invasion activates the host's innate immune response, inducing the production of numerous cytokines and interferons to eliminate pathogens. Except for viral DNA/RNA, viral proteins are also targets of pattern recognition receptors. Membrane-bound receptors such as Toll-like receptor (TLR)1, TLR2, TLR4, TLR6, and TLR10 relate to the recognition of viral proteins. Distinct TLRs perform both protective and detrimental roles for a specific virus. Here, we review viral proteins serving as pathogen-associated molecular patterns and their corresponding TLRs. These viruses are all enveloped, including respiratory syncytial virus, hepatitis C virus, measles virus, herpesvirus human immunodeficiency virus, and coronavirus, and can encode proteins to activate innate immunity in a TLR-dependent way. The TLR-viral protein relationship plays an important role in innate immunity activation. A detailed understanding of their pathways contributes to a novel direction for vaccine development.


Subject(s)
Immunity, Innate , Pathogen-Associated Molecular Pattern Molecules/metabolism , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Viral Proteins/metabolism , Virus Diseases/immunology , Viruses/immunology , Animals , HIV/immunology , HIV/metabolism , HIV/pathogenicity , Hepacivirus/immunology , Hepacivirus/metabolism , Hepacivirus/pathogenicity , Herpesviridae/immunology , Herpesviridae/metabolism , Herpesviridae/pathogenicity , Humans , Measles virus/immunology , Measles virus/metabolism , Measles virus/pathogenicity , Pathogen-Associated Molecular Pattern Molecules/chemistry , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/metabolism , Respiratory Syncytial Viruses/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Virus Diseases/virology , Viruses/metabolism , Viruses/pathogenicity
2.
Lancet ; 399(10325): 678-690, 2022 02 12.
Article in English | MEDLINE | ID: covidwho-1721141

ABSTRACT

Measles is a highly contagious, potentially fatal, but vaccine-preventable disease caused by measles virus. Symptoms include fever, maculopapular rash, and at least one of cough, coryza, or conjunctivitis, although vaccinated individuals can have milder or even no symptoms. Laboratory diagnosis relies largely on the detection of specific IgM antibodies in serum, dried blood spots, or oral fluid, or the detection of viral RNA in throat or nasopharyngeal swabs, urine, or oral fluid. Complications can affect many organs and often include otitis media, laryngotracheobronchitis, pneumonia, stomatitis, and diarrhoea. Neurological complications are uncommon but serious, and can occur during or soon after the acute disease (eg, acute disseminated encephalomyelitis) or months or even years later (eg, measles inclusion body encephalitis and subacute sclerosing panencephalitis). Patient management mainly involves supportive therapy, such as vitamin A supplementation, monitoring for and treatment of secondary bacterial infections with antibiotics, and rehydration in the case of severe diarrhoea. There is no specific antiviral therapy for the treatment of measles, and disease control largely depends on prevention. However, despite the availability of a safe and effective vaccine, measles is still endemic in many countries and causes considerable morbidity and mortality, especially among children in resource-poor settings. The low case numbers reported in 2020, after a worldwide resurgence of measles between 2017 and 2019, have to be interpreted cautiously, owing to the effect of the COVID-19 pandemic on disease surveillance. Disrupted vaccination activities during the pandemic increase the potential for another resurgence of measles in the near future, and effective, timely catch-up vaccination campaigns, strong commitment and leadership, and sufficient resources will be required to mitigate this threat.


Subject(s)
COVID-19/epidemiology , Endemic Diseases/prevention & control , Mass Vaccination/organization & administration , Measles Vaccine/administration & dosage , Measles/prevention & control , COVID-19/prevention & control , Communicable Disease Control/organization & administration , Communicable Disease Control/standards , Endemic Diseases/statistics & numerical data , Humans , Mass Vaccination/standards , Mass Vaccination/statistics & numerical data , Measles/epidemiology , Measles/immunology , Measles/virology , Measles virus/immunology , Measles virus/pathogenicity , Pandemics/prevention & control
3.
Viruses ; 13(10)2021 10 02.
Article in English | MEDLINE | ID: covidwho-1465472

ABSTRACT

The MMR vaccination program was introduced in Spain in 1981. Consistently high vaccination coverage has led to Spain being declared free of endemic measles transmission since 2014. A few imported and import-related cases were reported during the post-elimination phase (2014 to 2020), with very low incidence: three cases per million of inhabitants a year, 70% in adults. In the post-elimination phase an increasing proportion of measles appeared in two-dose vaccinated individuals (up to 14%), posing a challenge to surveillance and laboratory investigations. Severity and clinical presentation were milder among the vaccinated. The IgM response varied and the viral load decreased, making the virus more difficult to detect. A valid set of samples (serum, urine and throat swab) is strongly recommended for accurate case classification. One third of measles in fully vaccinated people was contracted in healthcare settings, mainly in doctors and nurses, consistent with the important role of high intensity exposure in measles breakthrough cases. Surveillance protocols and laboratory algorithms should be adapted in advanced elimination settings. Reinforcing the immunity of people working in high exposure environments, such as healthcare settings, and implementing additional infection control measures, such as masking and social distancing, are becoming crucial for the global aim of measles eradication.


Subject(s)
Measles/diagnosis , Measles/epidemiology , Adolescent , Child , Child, Preschool , Disease Outbreaks/prevention & control , Epidemiological Monitoring , Female , Humans , Infant , Infant, Newborn , Male , Measles/prevention & control , Measles Vaccine/immunology , Measles Vaccine/pharmacology , Measles virus/pathogenicity , Morbillivirus/pathogenicity , Spain/epidemiology , Vaccination/trends , Vaccination Coverage/statistics & numerical data , Vaccination Coverage/trends , Vaccine Efficacy/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL